
Chapter 13

INTRODUCTION TO

THE SECOND LAW

There is good reason for wanting to violate the Second Law, for

if it could be done, all of man’s energy requirements could forever

be met without any depletion of resources or pollution of his sur-

roundings.

− H.C. Van Ness (Understanding Thermodynamics)

Learning thermodynamics even at an introductory level cannot be con-
sidered complete without being told what the second law is all about. This
chapter introduces the second law to a beginner in an unconventional way.
The objective of this chapter is to make the students know why it is impor-
tant to learn the second law, and what role it has in the thermodynamic
analyses of engineering systems.
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13.1 The Second Law

In this book, we adopt the most general approach to present the Second
Law of Thermodynamics, which is that of Clausius. He made the following
statement of the second law in 1865:

Total entropy change of any system and its sur-
roundings is positive for a real process, and it ap-
proaches zero when the real process approaches a
reversible process.

The mathematical equivalence of the above statement of the second
law is as follows:

∆Stotal




> 0 for a real (irreversible) process
= 0 for a reversible process
< 0 for an impossible process

(13.1)

The second law is a fundamental law, which means nobody has either
proved or disproved the second law yet. It contains in it information that
has been gathered over several hundred years of observations and experi-
mentations with what is possible and what is not possible in reality.

Student: Teacher, the first law states energy is conserved. It is easy to under-
stand what the first law is all about, and therefore to accept it as true.
But, the second law does not make any sense.

Teacher: Well, let me put it this way. The second law of thermodynamics
states that the total entropy of a system and its surroundings together
is conserved for a reversible process, and it increases for a real, I mean
physically realizable, process.

Student: Why should the total entropy of a system and its surroundings to-
gether increases for a real process? What is that physical entity that we
measure using this entropy?

Teacher: It is a bit difficult to answer that question since it is impossible to
relate entropy to a single physical entity. Let me only tell you that entropy
is a property that provides a measure of the molecular disorder.
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Student: What is the connection between molecular disorder and the second
law?

Teacher: The Nature, it appears, prefers the direction of increasing molecular
disorder. Entropy could be used to measure the degree of molecular dis-
order. Thus, we could say that for any thermodynamic process to occur
in real life, the total entropy change of the system and its surroundings,
which is the measure of the total molecular disorder of the system and its
surroundings, must increase.

Student: Oh... I see.

13.2 Evaluation of Total Entropy Change

Since the value of ∆S can be used to determine whether a process is
real, reversible or impossible, we need to learn about how to determine ∆S.
We shall do that in this section.

For a closed system,

∆Stotal = ∆Ssys + ∆Ssurr (13.2)

where the label ’sys’ stands for system and the label ’surr’ stands for
surroundings.

Since S is a property, ∆Ssys can be evaluated using the following:

∆Ssys = msys ∆ssys = msys (sf − so)sys (13.3)

where the subscript f stands for the final state and the subscript o stands
for the initial state.

If the surroundings has a finite mass then the entropy difference between
the final and the initial states of this finite mass would give the entropy
change of the surroundings. We could therefore use

∆Ssurr = msurr ∆ssurr = msurr (sf − so)surr (13.4)

Expressions developed in Chapter 11 for ∆s of various substances could
be used to evaluate ∆ssys and ∆ssurr of (13.3) and (13.4), as will be
demonstrated in the worked examples of this chapter.
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The surroundings is, however, often taken as a thermal reservoir of
infinite heat capacity. A thermal reservoir is assumed to remain at a con-
stant temperature regardless of the heat transferred to or from the reser-
voir. It is also assumed that no irreversibilities occur within the reservoir.
With these assumptions, the entropy change of the surroundings taken as
a thermal reservoir is written as

∆Ssurr =
(Qin)surr

Tsurr
(13.5)

where (Qin)surr denotes the finite amount of heat transferred to the sur-
roundings from the system during the process, and Tsurr denotes the con-
stant temperature of the surroundings in the Kelvin scale.

If the system is thermally isolated from the surroundings during the
process, that is, in an adiabatic process, there is no heat exchange between
the system and the surroundings. Therefore,

∆Ssurr = 0

which simplifies (13.2) to the following:

∆Stotal = ∆Ssys for an adiabatic process. (13.6)

Using (13.3), we could write (13.6) as

∆Stotal = msys (sf − so)sys for an adiabatic process. (13.7)

If the given adiabatic process takes place reversibly then, of course, we
know that the entropy of the system remains a constant (see Section 11.4).
Therefore, (13.7) reduces to

∆Stotal = 0 for a reversible adiabatic process. (13.8)

To evaluate the entropy change for an open system, we need to incorpo-
rate the entropy of the matter that enters and leaves the system. Since we
will mostly be working with steady flow processes, let us get the expression
for the steady flow processes, which is the following:

d(∆Stotal)

dt
=

∑
ṁe se −

∑
ṁi si +

d(∆Ssurr)

dt
(13.9)

where the subscript e stands for the exit and the subscript i stands for the
inlet.



Introduction to the Second Law 309

If the surroundings is taken as a thermal reservoir at a constant tem-
perature of Tsurr K, we get

d(∆Ssurr)

dt
=

(Q̇in)surr

Tsurr

(13.10)

where (Q̇in)surr denotes the rate at which heat is transferred from the
system to the surroundings during the process.

For an adiabatic steady flow process, the system does not thermally
interact with the surroundings. Therefore,

d(∆Stotal)

dt
=

∑
ṁe se −

∑
ṁi si (13.11)

13.3 Worked Examples

Example 13.1
A thermally insulated rigid box of negligible

heat capacity is divided into equal halves by a partition of negligible mass.
Initially, one compartment contains air at 2 bar and 400 K, and the other is
evacuated. When the dividing partition is raptured, air will rush to fill the
entire box. Show that this process is a irreversible process. It is a common
assumption that air at low or moderate pressures behaves like an ideal gas.

Solution to Example 13.1

Let us evaluate the total entropy change of the system and its surroundings
to determine if the given process is reversible or not. The system is isolated from
the surroundings, and therefore

∆Stotal = ∆Ssys = mair ∆sair

Since air is assumed to behave as an ideal gas and since air volume has doubled
during the process, we could use (11.23) or (11.25) to determine ∆sair as follows:

∆sair = Cv ln (Tf/To) + R ln (2) = Cv ln (Pf/Po) + Cp ln (2)
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Let us now determine the temperature or pressure ratio between the final
and the initial equilibrium states of the process. Since the entire system is
isolated from its surroundings, the internal energy of the system remains constant
throughout the process. Since air is assumed to behave as an ideal gas, and
since the internal energy of an ideal gas is a function of temperature alone, the
temperature at the final equilibrium state is also 400 K. Thus, ln (Tf/To) = 0.
We therefore get

∆Stotal = mair ∆sair = mair R ln (2) > 0

Thus, according to the second law given by (13.1), the given process is a
irreversible process. We, of course, know that the expansion of air into vacuum
is unrestrained, and therefore the expansion process is far from reversible. The
second law has just proven it.

Example 13.2
Hot gases leaving the turbine of a turbojet

engine is reported to enter the nozzle of the turbojet engine at 6 bar and
975 K and exit the nozzle at 0.9 bar and 925 m/s. Determine if such a flow
is possible in reality. Ignore the speed of the gases at the nozzle entrance.
Assume that the gases behave as ideal gas and that Cp = 1.005 kJ/kg ·K
and γ = 1.4. Also, assume steady adiabatic flow through the nozzle.

Solution to Example 13.2

Using the steady flow energy equation applied to the steady adiabatic flow
of an ideal gas through the nozzle, we get Te, the temperature at the nozzle
exit, as

Te = Ti − c2
e − c2

i

2Cp
= 975 K − 9252

2 × 1005
K = 549.3 K

Since the flow through the adiabatic nozzle exchanges no heat with its sur-
roundings, using (13.11) and (11.24), we get

d(∆Stotal)
dt

= ṁ (se − si) = ṁ

[
Cp ln

(
Te

Ti

)
− R ln

(
Pe

Pi

)]

= ṁ R

[
1.4

1.4 − 1
ln

(
549.3
975

)
− ln

(
0.9
6

)]

= −0.11 ṁ R < 0
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Thus, according to the second law given by (13.1), the given process is an

impossible process.

Example 13.3
Determine the maximum possible speed re-

alizable at the nozzle exit of Example 13.2 for the given inlet condition
and exit pressure.

Solution to Example 13.3

At the reversible limit, d(∆Stotal)/dt) = 0 for the flow through the adiabatic
nozzle. Therefore, we get the temperature at the nozzle exit, Te, as

ṁ R

[
1.4

1.4 − 1
ln

(
Te

975

)
− ln

(
0.9
6

)]
= 0

which gives Te = 567 K.
Using this exit temperature in the steady flow energy equation applicable for

the flow through adiabatic nozzle, we get the speed at the nozzle exit, ce, as

ce =
√

2 × Cp(Ti − Te) =
√

2 × 1005 × (975 − 567) = 905.5 m/s

which is the maximum possible speed realizable at the nozzle exit for the given

conditions.

Example 13.4
A steady flow of steam enters an adiabatic

turbine at 60 bar and 400◦C with negligible velocity. It is reported to leave
the nozzle at 3 bar as saturated steam. Is that possible?

Solution to Example 13.4

The specific entropy of steam at the entrance of the turbine can be found
from a Steam Table as se = s at 60 bar and 400◦C = 6.541 kJ/kg ·K. The
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specific entropy of steam at the exit of the turbine is found from a Steam Table
as si = s of saturated steam at 3 bar = 6.993 kJ/kg ·K.

Therefore, for steady flow through an adiabatic turbine,

d(∆Stotal)
dt

= ṁ (se − si) = ṁ (6.541 − 6.993) < 0

Thus, according to the second law given by (13.1), the given process is not

possible in reality.

Example 13.5
Calculate the entropy change for the process

where 3 kg of liquid water at 30◦C is cooled until it freezes at 0◦C. Take
Cwater as 4.2 kJ/kg ·K, and the latent heat of freezing at 0◦C as −333
kJ/kg.

Solution to Example 13.5

Considering water as an incompressible substance, we could use (11.22) to
determine the entropy change for the process, in which the temperature of water
is reduced from 30◦C to 0◦C, as follows:

∆s = (4.2 kJ/kg ·K) × ln (273/303) = −0.44 kJ/kg ·K
Conversion of water to ice occurs at a constant temperature of 0◦C, during

which v changes but P remains constant. Thus, let us start with T ds = dh −
v dP , which reduces to T ds = dh for a constant-pressure process such as the
one considered here. Therefore, we get

∆s =
∫

dh

T
=

∆h

T

for the given constant-pressure and constant-temperature phase change process.
Since ∆h for the process of water turning into ice at 0◦C is the latent heat

of freezing, we get

∆s =
−333 kJ/kg

273 K
= −1.22 kJ/kg ·K

The total change in the entropy for the given process is therefore

∆Ssys = 3 kg × (−0.44 − 1.22) kJ/kg ·K = −4.98 kJ/K (13.12)
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Student: Teacher, the total entropy change of the system is negative in the
above example. According the second law, it is then an impossible process.
How could that be? We know that water can be frozen to get ice. What
is wrong?

Teacher: Nothing is wrong, dear Student. Observe that it is the total en-
tropy change of the system that takes a negative value, not the total
entropy change of the system and the surroundings. The given system
has interacted with its surroundings during cooling, by losing heat to the
surroundings. Therefore, we need to evaluate the entropy change of the
surroundings, and add that value to the entropy change of the system to
get the total entropy change of the system and its surroundings. It is this
total that should take a positive value for the process to be a real process.

Example 13.6
Calculate the total entropy change of the sys-

tem and its surroundings for the process given in Example 13.5. Take
the surroundings to be a thermal reservoir at −20◦C.

Solution to Example 13.6

The entropy change of the system is calculated in the Solution to Exam-
ple 13.5, and is given by (13.12). Now, let us evaluate the entropy change of
the surroundings. Since the surroundings is assumed to be a thermal reservoir
at −20◦C, we could use (13.5) to get ∆Ssurr as follows:

∆Ssurr =
(Qin)surr

253 K
(13.13)

where (Qin)surr is the heat lost by the system to the surroundings.

The heat lost by water when it is cooled from 30◦C to 0◦C is evaluated using
(3 kg) × (4.2 kJ/kg ·K) × (303 − 273) K, which becomes 378 kJ. Heat lost
during the conversion of water at 0◦C to ice at 0◦C is evaluated using (3 kg) ×
333 kJ/kg, which becomes 999 kJ.
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The total heat lost to the surroundings is therefore 1377 kJ. Substituting it
in (13.13), we get

∆Ssurr =
1377 kJ

253 K
= 5.44 kJ/K (13.14)

Combining (13.12) and (13.14), we get

∆Stotal = 0.46 kJ/K > 0

Therefore, according to the second law, the process considered is a real

(irreversible) process.

Student: Teacher, you have assumed that the surroundings was at −20◦C in
working out the above example. What if I take the surroundings to be at
the room temperature, say, 30◦C. Will I still get ∆Stotal > 0?

Teacher: You can’t do that. How could the system, which is cooled from 30◦C
to 0◦C, lose heat to a surroundings that is at a higher temperature than
the system?

Student: Yes, that is true.... But, Teacher, it happens with the refrigerator.
Doesn’t it?

Teacher: Yes, it does. Heat is transferred from the inside of the refrigerator,
which is at a much lower temperature than the atmospheric temperature,
to the surroundings, which is at atmospheric temperature. That is correct.

Student: How does that happen, Teacher?

Teacher: A refrigerator cannot lose heat to its surroundings unless we provide
work in the form of electricity to operate its compressor. Do you agree
with that?

Student: Yes, I do. I know about the compressor in the refrigerator. If the
compressor fails then refrigerator does not function. Well, how does a
refrigerator work?

Teacher: Each refrigerator has an engine, which consists of a fluid known as
refrigerant. Are you familiar with that?

Student: I know about the refrigerant used in a refrigerator. I know that
CFCs, the chemicals that make a hole in the ozone layer, are used as
refrigerants. But, nowadays, it is being replaced by other chemicals that
does not damage the ozone layer.
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Teacher: It’s very good that you know so much about refrigerants. Now, let
me tell you about the cyclic process executed by the refrigerant in the
refrigerator. The schematic diagram of a typical refrigeration cycle is
given in Figure 13.1.

evaporator

condenser

reciprocating
compressor

throttling
valve

�

heat removed from the
refrigerated space at −10◦C

�
Heat rejected to the
surroundings at 30◦C

� work input
as electricity

superheated vapour
at 1.2 bar & −20◦C

superheated vapour
at 10 bar & 65oC

vapour-liquid
mixture at

1.2 bar & −25.8◦C

subcooled
liquid at

10 bar & 40◦C

Figure 13.1 Schematic of a typical refrigeration cycle.

Student: Teacher, the figure looks complicated except for the compressor,
throttling valve and the condenser. We have already learned about them
in Chapter 10. Haven’t we?

Teacher: Yes, you have. Let me explain the workings of the refrigeration
cycle shown in the figure. First of all, let’s take the freezer compartment
of a refrigerator, which must be maintained, say, at −10◦C. Heat must
be continuously removed from the freezer space to maintain such a low
temperature when the surrounding atmosphere is around 30◦C. Do you
agree with that?

Student: Yes, I do.

Teacher: Let us send a liquid, the refrigerant, at a temperature much lower
than −10◦C through the evaporator coil that is attached to the inner walls
of the freezer compartment. Tell me what happens to the refrigerant then.
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Student: Of course, heat will be transferred from the freezer space at −10◦C
to the refrigerant at a temperature much lower than −10◦C.

Teacher: That’s correct. The refrigerant entering the evaporator is usually
maintained as a mixture of saturated liquid and vapour at a temperature
at least 10 degrees below the freezer space temperature, and at a pressure
slightly above the atmospheric pressure. The heat transferred from the
freezer space to the refrigerant heats the refrigerant to a slightly super-
heated vapour state. This vapour is compressed to a pressure about 8 to
10 times the atmospheric pressure in a reciprocating type of compressor
powered by electricity.

Student: Why are we compressing the refrigerant, Teacher?

Teacher: When the refrigerant vapour is compressed, its temperature would
increase. We need to increase the temperature of the refrigerant well
above the temperature of the surroundings, so that the refrigerant could
lose all the heat that it has gained in the evaporator to the surroundings,
as it passes through the condenser coil that is exposed to the atmosphere.

Student: I see, that is why the air around the refrigerator is warm. It explains
why my cat loves to lie down on the refrigerator during the cold days.

Teacher: Yes, that is right.

Student: Okay, Teacher, I understand how the refrigeration cycle works. But,
tell me why there is a throttling valve in the cycle.

Teacher: The temperature of the refrigerant leaving the condenser could not
be reduced below the atmospheric temperature. Do you agree with that?

Student: Yes, I do. We could not lower the temperature of the refrigerant
below the temperature of the atmosphere to which it is losing heat.

Teacher: That’s correct. The refrigerant leaving the condenser at a temper-
ature above the atmospheric temperature is throttled using a throttling
valve to reduce the temperature of the refrigerant passing through it, to
a value that is much below the atmospheric temperature.

Student: Well, I see why a throttling valve is needed.

Teacher: The refrigeration cycle is so designed that the temperature and the
pressure reductions across the throttling valve, which is simply a capillary
tube, will bring the refrigerant to the temperature and the pressure at
which it enters the evaporator. In this way, the refrigeration cycle is
completed and the same refrigerant is used over and over again.
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Student: Oh, I see. That’s neat. But... I have a question. It appears that the
refrigerant is used and reused. Then, how it enters the atmosphere and
destroys the ozone layer.

Teacher: Oh, well, the discarded refrigerators are the main culprits who let
the refrigerant into the atmosphere. Now, I want you to take note of the
fact that heat cannot be transferred from a lower temperature body to a
higher temperature body unless work is provided to the engine, as with
the refrigerators.

Student: Yes, I have noted that.

Teacher: In the following examples, we will prove that fact using the second
law given by (13.1).

Example 13.7
Is it possible for an engine, whose working

fluid operating in a cyclic process as in the refrigeration cycle discussed
above, to transfer heat from a cooler reservoir to a hotter reservoir without
producing any other effects on the surroundings?

Solution to Example 13.7

Let us consider the schematic of an engine shown in Figure 13.2, whose
working fluid describe is said to describe a cyclic process. It receives Qin amount
of heat from the cold reservoir at TL K and rejects Qout amount of heat to the
hot reservoir at TH K, where TH > TL.

Since the system describes a cyclic process, the internal energy of the system
remains a constant. Therefore, according to the first law, all heat removed from
the cold reservoir could be transferred to the hot reservoir. That is,

Qin = Qout (13.15)

Let us now calculate the total entropy change of the engine of Figure 13.2.
The system undergoes a cyclic process and entropy is a property, and therefore
the entropy of the system would not change. That is,

∆Ssys = 0 (13.16)
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��
��

hot reservoir at TH K

cold reservoir at TL K

Qout

Qin

Figure 13.2 Heat transfer from a cooler reservoir to a hotter reservoir.

The surroundings consists of the hot reservoir at TH K and the cold reservoir
at TL K. The entropy change of the surroundings can therefore be evaluated
using (13.5) as follows:

∆Ssurr =
Qout

TH
− Qin

TL
(13.17)

where the hot reservoir gains Qout amount of heat from the system and the cold
reservoir loses Qin amount of heat to the system.

Combining (13.16) and (13.17), we get the total entropy change of the
engine of Figure 13.2 as

∆Stotal =
Qout

TH
− Qin

TL
(13.18)

Using (13.15), the above could be rewritten as

∆Stotal =
(

TL − TH

TH TL

)
Qin < 0

since TL, the temperature of the cold reservoir, is less than TH , the temperature
of the hot reservoir.

According to the second law, given by (13.1), a process for which ∆Stotal <
0 is an impossible process. Thus, no engine, whose working fluid operating in a
cyclic process, could transfer heat from a cooler reservoir to a hotter reservoir,
without producing any other effects.



Introduction to the Second Law 319

Example 13.8
Prove using the second law that it is possible

for an engine, whose working fluid operating in a cyclic process, to remove
heat from a cooler reservoir and rejects heat to a hotter reservoir, if work
is supplied to the engine?

Solution to Example 13.8

The engine given in this example is what is known as the refrigerator or,
as the heat pump in general, and the schematic of which is shown in Figure
13.3.

��
��

hot reservoir at TH K

cold reservoir at TL K

Qout

Qin

Figure 13.3 Schematic of a heat pump.

Win

This example is similar to Example 13.7, except for the fact that the
system is provided with work. Therefore, according to the first law,

Qin + Win = Qout (13.19)

The total entropy change of the heat pump of Figure 13.3 would be the
same as that is given by (13.18). Eliminating Qout from (13.18) using (13.19),
we get

∆Stotal =
Qin + Win

TH
− Qin

TL

=
Win

TH
−

(
TH − TL

TH TL

)
Qin (13.20)
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For ∆Stotal to be a positive quantity,

Win >

(
TH − TL

TL

)
Qin (13.21)

Thus, it is possible to construct an engine, whose working fluid operating
in a cyclic process, capable of removing heat from a cooler reservoir and rejects
heat to a hotter reservoir, if the work done on the working fluid of the engine
satisfies (13.21).

Comment: From Example 13.7 and Example 13.8, we shall conclude
that it is impossible to construct an engine, whose working fluid operating in a
cyclic process, capable of transferring heat from a cooler body to a hotter body,
without producing no other effect. This is the famous Clausius Statement
of the Second Law.

The ratio of heat removed from the cooler reservoir by the heat pump
to the work supplied to the heat pump is known as the coefficient of
performance, and is denoted by COP . From (13.21), we can determine
the upper limit of the COP as follows:

COP =
Qin

Win
<

TL

TH − TL
(13.22)

Any heat pump that works at the upper limit of the COP will have
∆Stotal = 0, which means that such a heat pump operates as a reversible
heat pump. A reversible heat pump is known as the Carnot heat pump,
and its COP is known at the Carnot COP , given by

COPCarnot =
TL

TH − TL

(13.23)

Example 13.9
Determine the minimum amount of work re-

quired to operate an air-conditioner which will maintain an indoor tem-
perature of 25◦C. The atmospheric temperature is at 36◦C, and the heat
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generated indoor from the people and other heat generating devices are esti-
mated to be 26 MJ/h. Determine also the heat rejected to the atmosphere
by the air-conditioner.

Solution to Example 13.9

The air-conditioner functions as a heat pump removing 26 MJ/h of heat from
the indoor space maintained at 25◦C (which is the cooler reservoir) and rejecting
heat to the atmosphere at 36◦C (which is the hotter reservoir). Combining
(13.22) and (13.23), we can write the coefficient of performance of an air-
conditioner, as

COP =
Qin

Win
≤ COPCarnot

which gives

Win =
Qin

COP
≥ Qin

COPCarnot

The minimum work required by the air-conditioner is therefore given by

(Win)min =
Qin

COPCarnot

We can calculate the COP using (13.23) as

COPCarnot =
TL

TH − TL
=

273 + 25
(273 + 36) − (273 + 25)

= 27.1

It is given that Qin = 26 MJ/h, and therefore

(Win)min =
26 MJ/h

27.1
= 0.27 kW

The minimum amount of heat rejected to the atmosphere by the air-conditioner
is calculated as follows:

(Qout)min = Qin + (Win)min

= 26 MJ/h +
26

27.1
MJ/h ≈ 27 MJ/h

Comment: Note that making the living space cool and comfortable by air-

conditioning results in additional amount of heat being rejected into the envi-

ronment. At least 1 MJ/h of waste heat is added in the case considered in this

example.
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Example 13.10
Is it possible to convert all heat provided to

an engine, whose working fluid operating in a cycling process, into useful
work?

Solution to Example 13.10

Let us consider the engine shown in Figure 13.4. The working fluid of the
engine, taken as the system, is said to operate a cyclic process. It receives Qin

amount of heat from the surroundings and does Wout amount of work on the
surroundings.

��
��

hot reservoir at TH K

Qin

Figure 13.4 Schematic of an engine converting all heat into work.

Wout

Since the system describes a cyclic process, the internal energy of the system
remains a constant. Therefore, according to the first law, all heat provided to
the system is converted into work. That is, Wout = Qin.

Well, what does the second law says about such a 100% conversion of heat
into work? To answer this question, let us calculate the total entropy change of
the engine of Figure 13.4. Following the methods used in the previous examples,
we could write that ∆Ssys = 0, and ∆Ssurr = −(Qin/TH).

The total entropy change of the engine of Figure 13.4 is therefore

∆Stotal = −Qin

TH
< 0 (13.24)

since Qin and TH are positive quantities.
According to the second law, given by (13.1), a process for which ∆Stotal

< 0 is an impossible process. Therefore, it is not possible to convert all heat
provided to an engine, whose working fluid operating in a cycling process, into
work.
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Example 13.11
Prove using the second law that it is pos-

sible for an engine, whose working fluid operating in a cyclic process, to
convert part of the heat that it receives from a hotter reservoir into work
done on the surroundings, provided the remaining heat is rejected to a
cooler reservoir.

Solution to Example 13.11

The engine given in this example is what is known as the heat engine, and
the schematic of which is shown in Figure 13.5.

��
��

hot reservoir at TH K

cold reservoir at TL K

Qin

Qout

Figure 13.5 Schematic of a heat engine.

Wout

This example is similar to Example 13.10, except for the fact that the
system rejects heat into a cooler reservoir. Therefore, according to the first law,

Qin = Wout + Qout (13.25)

Let us calculate the total entropy change of the engine of Figure 13.5 fol-
lowing the methods used in the previous examples as follows: ∆Ssys = 0, and
∆Ssurr = −(Qin/TH) + (Qout/TL).

The total entropy change of the engine of Figure 13.5 is therefore

∆Stotal = −Qin

TH
+

Qout

TL
(13.26)
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Eliminating Qout from (13.26) using (13.25), we get

∆Stotal = −Qin

TH
+

Qin − Wout

TL

=
(

TH − TL

TH TL

)
Qin − Wout

TL
(13.27)

For ∆Stotal to be a positive quantity,

Wout <

(
TH − TL

TH

)
Qin (13.28)

Thus, it is possible to construct an engine, whose working fluid operating in
a cyclic process, to convert part of the heat it receives from a hotter reservoir
into work done on the surroundings, and to reject the remaining heat to a cooler
reservoir, provided (13.28) is satisfied.

Comment: From Example 13.10 and Example 13.11, we shall conclude

that it is impossible to construct an engine, whose working fluid operating in a

cyclic process, capable of converting all heat it receives into useful work, without

producing no other effect in its surroundings. This is the famous Kelvin-Plank
Statement of the Second Law.

The ratio of work obtained from the heat engine to the heat provided to
the heat engine is known as the thermal efficiency, and is denoted by η.
From (13.28), we can determine the upper limit of the thermal efficiency
as follows:

η =
Wout

Qin

< 1 − TL

TH

(13.29)

Any heat engine that works at the upper limit of the thermal efficiency
will have ∆Stotal = 0, which means that such a heat engine operates as a
reversible heat engine. A reversible heat engine is known as the Carnot
heat engine, and its thermal efficiency is known at the Carnot effi-
ciency, denoted by

ηCarnot = 1 − TL

TH
(13.30)

No heat engine can have a thermal efficiency higher than the Carnot
efficiency, which is a function of the maximum and minimum temperatures
across which the heat engine operates.
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Increasing the temperature of the hotter reservoir and/or decreasing the
temperature of the cooler reservoir are the only means by which the Carnot
efficiency of a heat engine could be increased.

Example 13.12
Consider the steam turbine of Example

12.4, whose working fluid (water/steam) operates in a cyclic process. Take
the hot gases providing heat to the steam generator as the hotter reservoir,
and assume that it remains at a constant temperature of 500◦C throughout
the operation. Take the cooling water removing heat from the condenser
as the cooler reservoir at a constant temperature of 27◦C. If the heat input
to the steam engine from the hotter reservoir is 155 MJ/s, determine the
maximum work output possible from the heat engine, and the amount of
heat rejected to the cooler reservoir.

Solution to Example 13.12

Combining (13.29) and (13.30), we can write that the thermal efficiency of
a heat engine as

η =
Wout

Qin
≤ ηCarnot

which gives

Wout = η × Qin ≤ ηCarnot × Qin

The maximum work obtainable is therefore given by

(Wout)max = ηCarnot × Qin

We can calculate ηCarnot using (13.30) as

ηCarnot = 1 − TL

TH
= 1 − 273 + 27

273 + 500
= 61.2%

It is given that Qin = 155 MJ/s, and therefore

(Wout)max = 0.612 × 155 MJ/s = 95 MW
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The minimum amount of heat rejected by the heat engine can be calculated
using the first law as follows:

(Qout)min = Qin − (Wout)max = 155 MJ/s − 95 MW = 60 MJ/s

Comment: For any real heat engine working between the reservoirs at 500◦C
and 27◦C, the thermal efficiency would be less than 61.2%, which is the Carnot

efficiency, the work output would be less than 95 MW, and the heat rejected by

the engine would be more than 60 MJ/s.

Example 13.13
If the temperature of the cooler reservoir

of the heat engine of Example 13.12 is reduced to, say, −23◦C, then
the work output of the heat engine could be increased for the same 155
MJ/s of heat that the heat engine receives from the reservoir at 500◦C.
You therefore plan to use a cooler reservoir at −23◦C for the heat engine.
To maintain the temperature at −23◦C, you plan to use a heat pump that
operates between the −23◦C reservoir and the original cooler reservoir of
the heat engine of Example 13.12 at 27◦C. Assuming that all the heat
rejected by the heat engine to the reservoir at −23◦C is removed by the heat
pump, determine the maximum net work output and the overall thermal
efficiency of the combined system.

Solution to Example 13.13

Figure 13.6 shows the combined system. The heat pump could be operated
only if we provide work to it, which is denoted as Win is the figure. The net
work output is therefore Wout−Win, where Wout is the work output of the heat
engine.

For the heat engine, following the procedure adopted in the Solution to
Example 13.12, we get

ηCarnot = 1 − 250
773

= 0.677

and therefore the maximum work obtainable from the heat engine is given by

(Wout)max = ηCarnot × Q1 = 0.677 × 155 MJ/s = 105 MW
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Q1 = 155 MJ/s
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Figure 13.6 Schematic for Example 13.13.
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Heat rejected by the heat engine to the reservoir at −23◦C is

Q2 = Q1 − (Wout)max = 155 MJ/s − 105 MW = 50 MJ/s

This amount of heat is removed by the heat pump from the reservoir at
−23◦C, and therefore

Q3 = Q2 = 50 MJ/s

Combining (13.22) and (13.23), we can write the coefficient of performance
of a heat pump as

COP =
Q3

Win
≤ COPCarnot

which gives

Win =
Q3

COP
≥ Q3

COPCarnot

The minimum work required by the heat pump is therefore given by

(Win)min =
Q3

COPCarnot

We can calculate the COP using (13.23) as

COPCarnot =
TL

TH − TL
=

250
300 − 250

= 5

We know that Q3 = 50 MJ/s, and therefore

(Win)min =
50 MJ/s

5
= 10 MW
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The net work output of the combined system is calculated as follows:

(Wout)net = (Wout)max − (Win)min = 105 MW − 10 MW = 95 MW

which is the maximum net work output obtainable from the combined system.

The overall thermal efficiency of the combined system is determined as fol-
lows:

ηoverall =
(Wout)net

Q1
=

95 MW

155 MJ/s
= 61.2

Comment: Observe that the maximum net work output and the overall thermal

efficiency of the combined system are the same as the maximum work output and

the thermal efficiency of the heat engine alone in Example 13.12. Therefore,

it is of no advantage to use the combined system proposed in this example to

generate the work required.

Example 13.14
A metal block A of 70 kg is at 800 K and

a metal block B of 200 kg is at 300 K. A heat engine, the working fluid of
which operating in a cyclic process, is to be operated using the two given
metal blocks as the heat source and heat sink, respectively. It is reported
that during a trial run, the temperature of the metal block A is reduced to
470 K and that of the metal block B is increased to 370 K. The specific
heat of the metal is given as 0.45 kJ/kg ·K. Verify the report by carrying
out a second law analysis.

If the system satisfies the second law, determine the work output and
the thermal efficiency of the heat engine.

Solution to Example 13.14

Consider the heat engine as the system and the metal blocks A and B as
the surroundings. Since the heat engine describes a cyclic process, ∆Ssys = 0.
Therefore,

∆Stotal = ∆Ssurr = ∆SA + ∆SB

Taking the metal blocks to be incompressible substances, we could use
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(11.15) to calculate the entropy changes of blocks A and B as follows:

∆SA = (70 kg) × (0.45 kJ/kg ·K) × ln
(

470
800

)
= −16.75 kJ/K

∆SB = (200 kg) × (0.45 kJ/kg ·K) × ln
(

370
300

)
= 18.88 kJ/K

Therefore,

∆Stotal = −16.75 kJ/K + 18.88 kJ/K = 2.12 kJ/K > 0

Since ∆Stotal > 0, according to the second law, the given system is physically
realizable.

The work output of the engine, according to the first law, is given by the

difference between the heat received by the engine from block A and the heat

rejected by the engine to block B. Heat received by the engine from block A is

given by 70 × 0.45 × (800 - 470) kJ = 10,395 kJ. Heat rejected by the engine

to block B is given by 200 × 0.45 × (370 - 300) kJ = 6,300 kJ. The work output

of the engine is therefore 4,095 kJ. And, the thermal efficiency of the engine is

39.4%.

Example 13.15
What should be the final temperature of

block B of Example 13.14 for the work output of the heat engine to
reach its maximum? Assume all other data of Example 13.14 remains
unchanged. Determine also the value of the maximum work output and
the corresponding thermal efficiency.

Solution to Example 13.15

The maximum work output could be obtained, in theory, when the system of
Example 13.14 reaches its reversible limit. That is, when ∆Stotal = ∆SA +
∆SB = 0, which gives

70 × 0.45 × ln
(

470
800

)
+ 200 × 0.45 × ln

(
TBf

300

)
= 0

where TBf is the final temperature of block B.
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Solving the above, we get TBf = 361.4 K. Therefore, heat rejected by the

engine to block B will become 200 × 0.45 × (361.4 - 300) kJ = 5,526 kJ. Heat

received by the engine from block A remains the same as in the Solution to
Example 13.14, which is 10,395 kJ. The maximum work output will therefore

be 4,869 kJ, and the corresponding thermal efficiency will be 46.8%.

Example 13.16
A reversible gas turbine, whose working

fluid is considered to operate in a cyclic process, works between two thermal
reservoirs, say A and B. The reservoir A is at 1200 K and the reservoir B
is at 500 K. A reversible steam turbine is operated between the reservoir B
and the atmosphere at 300 K. Determine the overall thermal efficiency of
this idealized combined gas turbine - steam turbine plant.

Compare this overall thermal efficiency to the thermal efficiency of a
reversible heat engine that would operate between the reservoirs at 1200 K
and 300 K.

Solution to Example 13.16

The schematic of the combined power plant is shown in Figure 13.7. The
overall thermal efficiency of the combined power plant would be

ηoverall =
(Wout)gt + (Wout)st

Q1

From the data given for the reversible gas and steam turbines, we get

ηgt = 1 − 500
1200

= 58.3% and (Wout)gt = 0.583Q1

ηst = 1 − 300
500

= 40.0% and (Wout)st = 0.4Q3

Assuming that all the heat rejected by the gas turbine to the reservoir at
500 K is taken by the steam turbine, we get

Q3 = Q2 = Q1 − (Wout)gt = Q1 − 0.583Q1 = 0.417Q1

which gives
(Wout)st = 0.4 × 0.417Q1 = 0.167Q1
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The overall thermal efficiency of the combined power plant therefore becomes

ηoverall =
0.583Q1 + 0.167Q1

Q1
= 75%

��
��Q1

Q2

Figure 13.7 Schematic for Example 13.16.
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For a reversible heat engine operating between the reservoirs at 1200 K and
300 K, the thermal efficiency is

η = 1 − 300
1200

= 75%

The results show that regardless of whether we operate a single heat engine
or a combined power plant, the thermal efficiency remains unchanged as far
as the temperatures of the hotter reservoir and the cooler reservoir remain the
same.

In reality, however, there are certain constraints in operating a gas turbine or
a steam turbine alone between the two given temperature extremes to reach the
kind of efficiencies that could be achieved by the combined power plant. The
details of which is beyond the scope of this text book, and therefore will not be
discussed here.
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Example 13.17
The combined power plants are known for their

improved thermal efficiency. The thermal efficiency of a newly installed com-
bined power plant is about 48%. The plant operates between the maximum
temperature of 1000 K and the atmospheric temperature of 300 K. A company
that comes with foreign aid claims that they will be able to increase the thermal
efficiency of the power plant to 70% by installing energy saving devices at a cost.
You have been asked to advice the Minister of Energy on that. What will be
your advice?

Solution to Example 13.17

A single (or even a combined) reversible heat engine operating between 1000
K and 300 K will have the following Carnot efficiency:

ηCarnot = 1 − 300
1000

= 70%

No engine, however cleverly built, could have an efficiency that is higher
than the Carnot efficiency, which is 70% in this case, as long as it is operated
between the temperature extremes of 1000 K and 300 K.

Reaching the 70% thermal efficiency means that the combined power plant
must be operated under reversible conditions. Even though, in theory, it is
possible to improve the thermal efficiency to achieve the Carnot efficiency, it
would be impossible to reach such efficiency in real life situations.

My advice to the Minister of Energy would be that the company’s claim is
not physically realizable.

13.4 Summary

• The mathematical equivalence of the second law is as follows:

∆Stotal




> 0 for a real (irreversible) process
= 0 for a reversible process
< 0 for an impossible process

(13.1)



Introduction to the Second Law 333

• For a closed system,

∆Stotal = ∆Ssys + ∆Ssurr (13.2)

where

∆Ssys = m ∆ssys = m (sf − so) (13.3)

• If the surroundings has a finite mass,

∆Ssurr = msurr ∆ssurr = msurr (sf − so)surr (13.4)

• A thermal reservoir is assumed to remain at a constant temperature
regardless of the heat transferred to or from the reservoir. It is also
assumed that no irreversibilities occur within the thermal reservoir.

• If the surroundings is taken as a thermal reservoir at a temperature of
Tsurr K then

∆Ssurr =
(Qin)surr

Tsurr
(13.5)

where (Qin)surr denotes the finite amount of heat transferred to the sur-
roundings from the system during the process.

• For an adiabatic process,

∆Stotal = ∆Ssys = m (sf − so) (13.7)

• For a reversible adiabatic process,

∆Stotal = 0 (13.8)

• For an open system,

d(∆Stotal)
dt

=
∑

ṁe se −
∑

ṁi si +
d(∆Ssurr)

dt
(13.9)

• If the surroundings of the open system is taken as a thermal reservoir at
a constant temperature of Tsurr K, then

d(∆Ssurr)
dt

=
(Q̇in)surr

Tsurr
(13.10)

where (Q̇in)surr denotes the rate at which heat is transferred from the
system to the surroundings during the process.
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• For an adiabatic steady flow process,

d(∆Stotal)
dt

=
∑

ṁe se −
∑

ṁi si (13.11)

• A heat pump is a device, whose working fluid operating in a cyclic process,
receives heat from a cooler reservoir and work from the surroundings, and
rejects all that it received, as heat to a hotter reservoir.

• The coefficient of performance of a heat pump is given by

COP =
Qin

Win
< COPCarnot (13.22)

where

COPCarnot =
TL

TH − TL
(13.23)

• No heat pump can have a coefficient of performance higher than the
Carnot coefficient of performance, which is a function of the maximum
and minimum temperatures across which the heat pump operates.

• Heat engine is a device, whose working fluid operating in a cyclic process,
receives heat from a hotter reservoir, does work on the surroundings, and
rejects the remaining heat to a cooler reservoir.

• The thermal efficiency of a heat engine is given by

η =
Wout

Qin
< ηCarnot (13.29)

where

ηCarnot = 1 − TL

TH
(13.30)

• No heat engine can have a thermal efficiency higher than the Carnot
efficiency, which is a function of the maximum and minimum temperatures
across which the heat engine operates.


