Chapter 11

ENTROPY

There is nothing like looking, if you want to find something. You
certainly usually find something, if you look, but it is not always

quite the something you were after.
— J.R.R. Tolkien (The Hobbit)

In the preceding chapters, we have learnt many aspects of the first law
applications to various thermodynamic systems. We have also learnt to
use the thermodynamic properties, such as pressure, temperature, internal
energy and enthalpy, when analysing thermodynamic systems. In this chap-
ter, we will learn yet another thermodynamic property known as entropy,
and its use in the thermodynamic analyses of systems.
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11.1 Reversible Process

The property entropy is defined for an ideal process known as the re-
versible process. Let us therefore first see what a reversible process
is all about. If we can execute a process which can be reversed without
leaving any trace on the surroundings, then such a process is known as the
reversible process. That is, if a reversible process is reversed then both the
system and the surroundings are returned to their respective original states
at the end of the reverse process. Processes that are not reversible are
called irreversible processes.

Student: Teacher, what exactly is the difference between a reversible process
and a cyclic process?

Teacher: In a cyclic process, the system returns to its original state. That's
all. We don’t bother about what happens to its surroundings when the
system is returned to its original state. In a reversible process, on the
other hand, the system need not return to its original state. However, the
path of the reversible process must be such that if the process is reversed
so as to return the system to its original state then its surroundings must
also return to its original state, as though the process has never occurred
in the first place.

Student: How to carry out a process such that, when reversed, no trace is left
to indicate that the process has ever occurred?

Teacher: If a process is carried out in such a manner that no irreversibilities take
place within or outside the boundaries of the system then it is possible to
reverse the system and the surroundings to their respective original states
as though the process has never occurred.

Student: Is it possible to realize such a process?

Teacher: Of course, it is not possible to realize a reversible process in real life
situations. But, if we can minimize the irreversibilities occurring within
and outside the boundary of a system during a process then such a process
can be said to approach a reversible process.

Student: What do you mean by irreversibilities, Teacher?
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Teacher: Friction is an irreversibility. During a process, some amount of work
may be done to overcome friction force. If such a process is reversed, we
will not be able to take back the energy used as work to overcome friction
force. As a matter of fact, some more work has to be done to overcome
friction during the reversal of the process as well. Such a process is far
from a reversible process. If we are to approach a reversible process then
the process taking place must experience very little or no friction forces.

Student: Okay, Teacher. | see that friction is an irreversibility. That, | must
say, is very easy to understand and accept. Are there any other forms of
irreversibilities, Teacher?

Teacher: Yes, there are. Unrestrained expansion or compression is another
form of irreversibility. A reversible expansion or compression process is
imagined to take place under infinitely small pressure difference between
the system and its surroundings, without destroying the uniform distribu-
tion of the properties within the system. That means, during a reversible
expansion or compression process, the system passes through a series of
equilibrium states. Therefore, it is possible to reverse it at any time during
the process without leaving a trace on the surroundings.

Student: Oh.. you are talking about the quasistatic process that we have learnt
in Chapter 7.

Teacher: Yes, a quasistatic process carried out under certain conditions is an
example of a reversible process.

Student: What are those conditions, Teacher?

Teacher: A quasistatic process carried out under adiabatic conditions is indeed
a reversible process.

Student: Why do we require the adiabatic condition, Teacher?

Teacher: Because heat transfer between a system and its surroundings is always
an irreversible process. You know that heat is transferred from a system
to its surroundings only if the temperature of the system is higher than
the temperature of the surroundings. If you are to reverse this process,
then heat must be transferred from the low temperature surroundings to
the high temperature system, which is impossible.

Student: Okay, Teacher. Are you saying that a reversible process must always
be an adiabatic process?
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Teacher: Well, we can always imagine a non-adiabatic process where the heat
transfer between the system and its surroundings takes place under the
condition of extremely small temperature difference between the system
and its surroundings. Such a process may be said to approach a reversible
process even though it is not an adiabatic process.

Student: Okay, Teacher. Let me see. If there is a non-adiabatic quasistatic
process, then heat is transferred between the system and the surroundings
under conditions of extremely small temperature differences between the
system and the surroundings. Is that correct?

Teacher: Yes, that is correct.

Student: Teacher, don't you think it would be very hard to transfer heat across
extremely small temperature differences?

Teacher: Yes, it would be impractical since it would take a very long time
to transfer heat across very small temperature differences between the
system and its surroundings.

Student: Teacher, | understand from what you are saying that a reversible
process is a highly idealized process, and that it is next to impossible to
execute a reversible process in reality. Why do we study it then?

Teacher: We study about reversible processes for two reasons. First, they
are easy to analyze since a system passes through a series of equilibrium
states during a reversible process. Second, they give the Nature's limit
imaginable for the corresponding real processes. Reversible processes can
be viewed as theoretical limits for the corresponding irreversible ones.

11.2 Definition of Entropy

The property entropy is defined in terms of change in entropy as

dS:( T )rev <111)

where the label "rev" stands for reversible process.
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Integrating the above, we get

AS:/Sf dS:/Of% (11.2)

which could be used for the evaluation of entropy change for a reversible
process between state o and state f.

In this textbook, we use S to denote entropy, and s to denote both the
specific and molar entropies. The unit kJ/K is used for entropy, kJ/kg- K
for specific entropy, and kJ/kmol - K for molar entropy.

11.3 Evaluation of Entropy Change
for Any Process

Entropy change could be evaluated using (11.2) provided the process
concerned is a reversible process. In this section, we will obtain expressions
that could be used to evaluate the entropy changes of both reversible and
irreversible processes.

Let us start from (11.1), which could be rearranged to give

TdS = (dQ;) (11.3)

rev

Using the first law, the d@;, term in (11.3) can be replaced to give

TdS = (dU — dW,) (11.4)

TEev

Since the internal energy change dU is independent of the path of the
process, but dWW;,, depends on the path of the process, (11.4) can be written
as

TdS = dU — (dWin)reo (11.5)

The work term in a reversible process of a simple compressible system
is the boundary work only. Since the path of a reversible process consists
of a series of equilibrium states, the boundary work involved in a reversible
process shall be given by (7.5). Using (7.5) in (11.5), we get

TdS = dU + PdV (11.6)
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which can be written in terms of specific (or molar) properties as
Tds =du+ Pdv (11.7)
Using h = u + Pv in (11.7) to eliminate du, we get
Tds =dh —vdP (11.8)
Equations (11.7) and (11.8) are the most general equations applicable
to evaluate the entropy change of any system undergoing any process,

reversible or irreversible.
Upon rearranging and integrating (11.7), we get

U du Y Pdv
As = — 11.9
=g (11.9)
Upon rearranging and integrating (11.8), we get
" dh Froydp
As = — — 11.10
=g (11.10)

Equations (11.9) and (11.10) could be used to determine the entropy
change of any process between state o and state f for any substance.

Student: Teacher, could you tell me why you dropped the subscript ,.,, from
(11.6) which you derived from (11.5), which is valid only for a reversible
process. Is that a mistake?

Teacher: No, it is not a mistake. Observe that each term in (11.6) is a prop-
erty, and the differential of a property depends only on the values of the
properties at the initial and the final states, not on the path of the pro-
cess. Therefore, (11.6), (11.7) and (11.8) are applicable for any process,
reversible or not. But, dW;, in (11.5) is a path dependent function, and
therefore it is necessary to specify the nature of the process for which
(11.5) can be applied. The same can be said about (11.3) where the path
dependent function dQ);, is equated to a combination of properties, T dS.

Student: Teacher, | can't agree with what you say.

Teacher: Why not?
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Student: Take the first law of thermodynamics given by dQ;, +dW;, = dU, in
which the summation of two path dependent functions dQ);,, and dW,, are
equated to the differential in the property U. But, we know that we can
apply dQ;n + dW;, = dU to any process as far as the system concerned
is a closed system.

Teacher: When adding two path dependent functions, it is possible that the
summation becomes independent of the path as in the case of the first
law. So that the first law is applicable for any process. But, in (11.3) or in
(11.5), there is only one path dependent function against a combination
of properties, which can be equated to each other only under special
circumstances, such as a reversible process.

Student: Oh... | see.

Teacher: It is also of interest to note that even though (11.7), and (11.8) are
obtained using the first law applied to closed system, these equations are
applied to fluid flowing through open systems as well since these equations
contain only properties.

11.4 Isentropic Process

For an adiabatic process, d@);, = 0. If the adiabatic process considered
is a reversible process then (11.1) will give dS = 0. That is to say entropy
remains constant for a reversible, adiabatic process. Such a process
is therefore known as an isentropic process.

11.4.1 Isentropic Process of an ideal gas
For an isentropic process, dS = 0. Therefore, (11.6) reduces to
dU + PdV =0 (11.11)
Since dU = m C, dT for an ideal gas, (11.11) can be rewritten as

mCydT + PdV =0 (11.12)
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which gives
— PdV =mC,dT (11.13)

which is the same as (7.27), the equation from which (7.29), (7.30) and
(7.31) describing the quasistatic adiabatic process, which is indeed an isen-
tropic process, of an ideal gas are derived. So, whenever we use (7.29),
(7.30) or (7.31) to describe a process of an ideal gas, we in fact are using
the information that entropy remains constant for that process.

We have already worked out problems involving the quasistatic adiabatic
processes of ideal gas (that is, isentropic processes of ideal gas) in the
preceding chapters. We made use of (7.29), (7.30) or (7.31) to work out
such problems.

11.4.2 Isentropic Process of
Steam/Water Systems

Entropy of a given mass of steam/water remains constant throughout
an isentropic process. We will therefore use the information that the spe-
cific entropy of a system remains constant when it undergoes an isentropic
process to refer to the steam table to determine the required equilibrium
state of the system along the isentropic process considered.

In this chapter, we shall work out problems involving the isentropic pro-
cesses of steam/water systems which we have not dealt with so far in this
book.

11.5 Worked Examples

Example 11.1

Based on equation (11.1), is it reasonable to
conclude that the entropy of a closed system remains constant during an
adiabatic process?
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Solution to Example 11.1

Equation (11.1) is applicable for a reversible process only. If the given adi-
abatic process is reversible then dS = 0, which means that entropy remains
constant for a reversible adiabatic process.

But, if the given adiabatic process is not a reversible process, then (11.1) is
not applicable for that process. Therefore, dS may not be equal to zero. And,
thus, we cannot say that entropy remains constant for such a process.

Example 11.2

Is the numerical value of the integral ff dQ/T
the same for all processes between states 1 and 27

Solution to Example 11.2

For a reversible process,
2
/ dQ/T = AS =S5, — 5
1

Since the difference (S2 - S1) depends only on the states 1 and 2, f12 dQ/T
remains the same for all reversible processes between states 1 and 2.

If the process considered is not a reversible one, then ff dQ/T cannot be
equated to (S2 - S1), and therefore we cannot expect the numerical value of the
integral ff dQ/T to be the same for all processes between states 1 and 2.

Example 11.3

Show that, for a reversible isothermal pro-
cess, the net heat supply to the system from its surroundings can be eval-
uated using Q;, = T AS.
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Solution to Example 11.3
For a reversible process, (11.2) can be applied. If the given process is a

reversible isothermal process, then T is a constant in (11.2) and therefore T' can
be taken out of the integral sign in (11.2). Thus, we get

AS = & /f(de)rev _ Qin (11.14)
T, T
where @);;, is the net heat supplied to the system undergoing a reversible isother-
mal process between states o and f. Equation (11.14) can be rearranged to
give

Qin =T AS for a reversible isothermal process. (11.15)

Example 11.4

Saturated steam at 40 bar expands reversibly
and isothermally to 5 bar in a piston-cylinder assembly. The mass of steam
is 5 kg. Determine the heat and work exchanges of the steam with its
surroundings.

Solution to Example 11.4

Temperature of saturated steam at 40 bar can be found from the Satu-
rated Steam Table as 250.3°C. Since the expansion is reversible and isothermal,
(11.15) could be used to determine the heat exchange between steam and its
surroundings.

Initially, steam is at saturated vapour state at 40 bar. Specific entropy at
the initial state can therefore be found from the Steam Table as 6.070 kJ/kg - K.

Since the expansion process takes place isothermally, temperature at the final
state remains at 250.3°C. Pressure at the final state is 5 bar. Specific entropy at
the final state can therefore be found from the Steam Table as ~7.271 kJ /kg - K.

The total entropy difference of the given isothermal process is then given by

AS = (5 kg) x (7.271 — 6.070) kJ/kg - K = 6.005 kJ/K
Using the above in (11.15), we get
Qin = (273 + 250.3) K x 6.005 kJ/K = 3142.4 kJ
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The work output could be calculated using the first law as
Wout = Qin — AU = 3142.4 kJ — (5 kg) X (uy — uo)

where uy = u for steam at 5 bar at 250.3°C ~ 2725 kJ/kg and u, = u for
saturated steam at 40 bar = 2602 kJ/kg.
Therefore, we get

Wour = 3142.4 kJ — (5 kg) x (2725 — 2602) kJ/kg = 2527.4 kJ

Example 11.5

If the working fluid of Example 11.4 were
an ideal gas instead of steam, then the heat supplied to the working fluid
would be the same as the work done by the working fluid during the ex-
pansion. Why is this not so for steam as seen in Solution to Example
11.47

Solution to Example 11.5

For an ideal gas, internal energy is a function of temperature alone. There-
fore, AU = 0 for the isothermal process of an ideal gas. Thus, the first law
would give that the heat supplied to the ideal gas is the same as the work done
by the ideal gas during the expansion.

For steam, internal energy is not a function of temperature alone. Therefore,
AU could take a finite value for an isothermal process of steam, as seen in the
Solution to Example 11.4. Owing to the finite value that AU takes, heat
supplied to steam cannot be the same as the work done by steam during its
expansion.

Example 11.6

Starting from T ds = dh—v d P, show that for
a constant-pressure process, As = C, In (Ty/T,) where C,, is the specific
heat at constant-pressure, taken as a constant.
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Solution to Example 11.6

Since dP = 0 for a constant-pressure process, T ds = dh — v dP reduces to
T'ds = dh for a constant-pressure process. (11.16)

The enthalpy change for any substance can be written as dh = C), dT for a
constant-pressure process of any substance (see Section 5.5). Equation (11.16)
therefore becomes

Tds = C,dT for a constant-pressure process,

which upon integration gives

Ty C
As = / ?p dT for a constant-pressure process. (11.17)

When C,, is taken as a constant, (11.17) reduces to

T
As=Cp1In (%) for a constant-pressure process. (11.18)

o

Equations (11.17) and (11.18) are applicable for both the reversible and
irreversible constant-pressure processes of any substance.

Example 11.7

Starting from T'ds = du + P dv, show that
for a constant-volume process, As = C,, In (17/T,) where C, is the specific
heat at constant-volume, taken as a constant.

Solution to Example 11.7

Since dv = 0 for a constant-volume process, T'ds = du + P dv reduces to
T'ds = du for a constant-volume process. (11.19)

The internal energy change for any substance can be written as du = C,, dT’
for a constant-volume process of any substance (see Section 5.4). Equation
(11.19) therefore becomes

T ds = C,dT for a constant-volume process,
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which upon integration gives
Ty Cv
As = / T dT’" for a constant-volume process. (11.20)
When C,, is taken as a constant, (11.20) reduces to
Ty
As=C, In T for a constant-volume process. (11.21)

o

Equations (11.20) and (11.21) are applicable for both the reversible and
irreversible constant-volume processes of any substance.

Example 11.8

Show that AS = m C In(T}/T,) for an in-
compressible substance undergoing any process, where m is the mass of
substance and C' is the specific heat, taken as constant.

Solution to Example 11.8

An incompressible substance does not experience any volume change, and
therefore dv = 0. The internal energy change for any substance undergoing
no volume change can be written as du = C,dT, where C, is the specific
heat at constant-volume (see Section 5.4). These facts about incompressible
substance are the same as those for the constant-volume process considered in
the Solution to Example 11.7. Therefore, (11.20) is applicable also for an
incompressible substance undergoing any process.

For an incompressible substance, (), and C, take nearly the same value
and we denote that value as C'. Taking C' as a constant, we could obtain an
expression for the total entropy change, staring from (11.20), as

AS=mC In (%) (11.22)

o

for an incompressible substance undergoing any process.
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Example 11.9

The temperature of a metal block of 500 kg
and 0.42 kJ /kg - K specific heat is reduced from 800 K to 450 K. Determine
the total entropy change of the metal block.

Solution to Example 11.9

Assuming the metal block to be an incompressible substance, we could use
(11.22) to evaluate the entropy change of the metal block as follows:

4
AS = (500 kg) x (0.42 kJ/kg-K) x In (%) — _120.8 kJ/K

Example 11.10

Starting from T'ds = du+ P dv, show that
an ideal gas (with constant C, and C,) undergoing any process satisfies
the following equations:

As = C, In(Ty/T,) + R In(vs/v,)

= C,In(Ty/T,) — R In(P;/P,)
= C, In(vs/v,) +Cy In(Py/P,)

Solution to Example 11.10

For an ideal gas, du = C, dT and P = RT/v. Substituting these in T'ds =
du + P dv and integrating, we get

As — /TvadT+/”fRTdv
T v, T

T v
= Cyln (%) +RIn <v_i> (11.23)

Using h = u+ Pvin Tds = du + P dv, we can get T'ds = dh — vdP as in
Section 11.3. For an ideal gas, dh = C, dT" and v = RT/P. Substituting these
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in T'ds = dh — vdP and integrating, we get

Ty Py
As / deT_/ RTdP
) T P, PT

T P
- Cpyln (%) ~Rn (%) (11.24)

Multiplying (11.23) by C,, and (11.24) by C,, and subtracting one from the
other, we get

P
(C,— Cy)As =C, R In (Z—f> +C,RIn (%)

Since C), — C,, = R, the above reduces to

As=C,In <ﬂ> +CyIn (%) (11.25)

Vo 0

Example 11.11

Air is compressed from 1 bar and 300 K to
7 bar at a steady flow rate of 9 kg/s. Determine the power required if the
flow through the compressor is reversible and adiabatic.

Solution to Example 11.11

Work input to the adiabatic compressor can be calculated using (10.11)
provided the potential energy and kinetic energy changes across the compressor
are neglected. Assuming air behaves as an ideal gas with constant C,, (10.11)
can be written as

(Ws)in == me (Te - Tz)
= (9 kg/s) x (1.005 kJ/kg-K) x (T. — 300 K)  (11.26)
where T, is not known.

Since the flow is reversible and adiabatic (that is, isentropic), (7.31) could
be used to determine T, as follows:

P\ =D/ 7 (1.4-1)/1.4
T. =T, <F> =300 K x <I> =523 K

Therefore, (11.26) gives (Ws)i, = 2.0 MW.
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Comment: Note that we could have also calculated T, using (11.24) in which
As = 0 since the process is reversible and adiabatic, that is, isentropic.

Example 11.12

Air is compressed from 1 bar and 300 K to
7 bar at a steady flow rate of 9 kg/s. Determine the power required if the
flow through the compressor is reversible and isothermal.

Solution to Example 11.12

Work input to a non-adiabatic compressor can be calculated using (10.10)
provided the potential energy change across the compressor is negligible. When
also the kinetic energy change across the compressor is neglected, (10.10) re-
duces to

Qin + (Wy)in = 1 (he — hy) (11.27)

Since the flow through the compressor is assumed to be reversible and
isothermal, we could use (11.15), which for a fluid flowing steadily at a mass
flow rate of 1 becomes

Qin =mT As =mT (sc — ;) (11.28)
Combining (11.27) and (11.28), we get
(We)in = 110 [(he — hi) — T (s — 5;)] (11.29)

for a reversible isothermal flow through a compressor.
Integrating (11.8) for an isothermal process, we get

Pe
T (50— 51) = (he — hi) —/ vdP (11.30)
P;
Combining (11.29) and (11.30), we get
. Pe
(Wy)in :m/ vdP (11.31)
P;

for a reversible isothermal flow through the compressor.
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If we assume that air behaves as an ideal gas then we get

(Wy)in = m RT In (%) (11.32)

for reversible isothermal flow of an ideal gas through a compressor.
Substituting the known values in (11.32), we get

. 8.314
(Ws)in = (9 kg/s) x 29

7
kJ/kg-K x 300 K x In <I> =15 MW

Example 11.13

Show that if the flow through a pump is
assumed to be reversible then the power input to the pump can be deter-
mined, neglecting potential and kinetic energy changes across the pump,
using

(Ws)zn ~ mvi (Pe - ID@)

where ¢ and e denote inlet and exit, respectively.

Solution to Example 11.13

Work input to a pump can be calculated using (10.10) provided the potential
energy change across the pump is negligible. When also the kinetic energy
change across the pump is neglected, (10.10) reduces to

Qin + (Wy)in = 1 (he — hy) (11.33)

Since the flow through the pump is assumed to be reversible, we could use
(11.3), which for a fluid flowing steadily at a mass flow rate of 7 becomes

d(Qin)reU =mTds

Upon integration, it gives

(Qin)rev =m /se Tds (1134)
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For a reversible flow through the pump, the heat input term in (11.33) can
be substituted by the heat input term given by (11.34). We then get

(We)in = 100 (he — h; — / Tds) (11.35)
Upon integration, (11.8) gives
Se Pe
/ Tds = he — hj — / vdP (11.36)
Sj Pi

Using (11.36), we can reduce (11.35) to
. Pe
(W) = 1 / vdP (11.37)
Py

which is applicable for a reversible flow through a pump.

Since only liquids are compressed using pumps and since the specific volume
of a liquid varies only slightly from the inlet to the exit of the pump, (11.37) can
be approximated to ‘

(WS)”L ~ mvi (Pe — Pz) (1138)

Example 11.14

A pump is used to increase the pressure of
12 kg/s of saturated water at 0.07 bar entering the pump to 15 bar with
only a slight temperature increase. Determine the power input to the pump
assuming reversible flow through the pump.

Solution to Example 11.14

Since the flow through the pump is assumed to be reversible, (11.38) may be
used to evaluate the power input to the pump. The specific volume of saturated
water at 0.07 bar entering the pump v; is 0.0010074 m?/kg. The mass flow rate
is 12 kg/s, P; = 0.07 bar and P, is 15 bar. Substituting the known numerical
values in (11.38), we get

(Win)pump = 12 kg/s x 0.0010074 m3/kg x (1500 — 7) kPa = 18.05 kW
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Example 11.15

Steam enters a turbine at 70 bar and 450°C
and leaves it as wet steam at 0.08 bar. Steam flow rate through the turbine
is 50 kg/s. Assuming the flow through turbine as reversible adiabatic,
determine the work output of the turbine.

Solution to Example 11.15

At the turbine inlet, we have superheated steam ‘at 70 bar and 450°C. The
specific enthalpy found from a Superheated Steam Table at the turbine inlet
condition is h; = 3287 kJ/kg.

At the turbine outlet, we have wet steam at 0.08 bar. Since the flow through
the turbine is assumed to be reversible adiabatic, the entropy of the flow remains
constant. That is,

Se = 8; = s at 70 bar and 450°C = 6.632 kJ/kg - K
The dryness fraction at the turbine outlet can be calculated using

Se — sy 6.632 —0.593

= 0.7911
Sfa 7.634

Te =

The specific enthalpy at the turbine outlet is then
he =h¢+ e X hpg =174+ 0.7911 x 2402 = 2074 kJ/kg

The work output of the turbine is calculated, using (10.9) applicable for flow
through an adiabatic turbine, as follows:

(We)outr = m(hi — he) = 50 x (3287 — 2074) kJ/s = 60.65 MW

Example 11.16

A rigid cylinder contains a ‘floating’ piston.
Initially, it divides the cylinder in half, and on each side of the piston the
cylinder holds 0.01 kmol of steam at 200°C and 100 kPa. Using an electrical
heater installed on side A of the cylinder, heat is added slowly until the
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pressure in side A reaches 150 kPa. The piston and the cylinder are perfect
thermal insulators with negligible heat capacity. Determine the following:
(a) Final volume of steam on side B.
(b) Work done by the piston on steam on side B.
(c) Amount of heat supplied by the electrical heater.

Solution to Example 11.16

Heat added slowly to side A causes the steam on side A to expand pushing
the ‘floating” piston outwards to compress the steam on side B. Both the
expansion of steam on side A and the compression of steam on side B may
be assumed to be quasistatic processes. Since the piston and the cylinder are
perfect heat insulators, the steam on side B is assumed to undergo an adiabatic
process.

Taking the molar mass of the steam as 18 kg/kmol, we find that the mass
of steam in each side is m = 0.18 kg. Figure 11.1 shows all the data for the
problem.

Note that this example is very similar to Example 7.24, except for the
difference the working fluid is ideal gas in Example 7.24 and it is steam in this
example. Since the behaviour of steam in general may not be approximated to
ideal gas behaviour, we cannot use (7.29), or its equivalent (7.30) or (7.31), to
describe the quasistatic adiabatic process executed by steam on side B, as we did
in the Solution to Example 7.24. Instead we shall use the fact the entropy
remains constant for a quasistatic adiabatic (that is, an isentropic) process.

= 1bar 1 bar § 1.5 bar 1.5 bar
% 200°C 200°C E> = Ta0C Tp,°C
0.18 kg 0.18 kg
Vai| VBi Var | VBy
initial state final state

Figure 11.1 Initial and final states of Example 11.16.

(a) Determine the final volume of steam on side B.

Initially, steam on side B is at 1 bar and 200°C. From a Steam Table, we can
find that the steam is at superheated vapour state with the following properties:
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vp; = 2.173 m3/kg, up; = 2659 kJ/kg and sp; = 7.834 kJ/kg - K.

At the final state, the steam on side B is at 1.5 bar. Since the entropy and
the mass of steam on side B remain constant, the specific entropy of steam on
side B at the final state is the same as sp; given above.

From a Steam Table, we can find that the final state of steam on side B at
1.5 bar 7.834 kJ/kg - K specific entropy is also a superheated vapour state with
the following properties:

vpr = 1.594 m3 /kg, ups = 2729 kJ/kg and Ty = 248°C.

Since the mass of steam on side B is 0.18 kg, we get the final volume of the
steam on side B as Vpy = 0.287 m3.

(b) Determine the work done by the piston on steam on side B.

Since the steam on side B undergoes an adiabatic process, the first law of
thermodynamics applied to it gives

(Win)g = (AU)p =m (upy — up;)
= 0.18 x (2729 — 2659) kJ = 12.6 kJ (11.39)

(c) Determine the amount of heat supplied by the electrical heater.

Following the discussion on part (c) of the Solution to Example 7.24,
we can write the heat supplied by the heater as

(Qin)a = (AU)a + (Win)B (11.40)

in which (AU)4 must be determined using
(AU) 4 = m(uap —ua;) = 0.18 x (uay — 2659) kJ

since u4; = Up;.

In order to find u ¢, we know one property of the steam on side A at the
final state, which is the pressure 1.5 bar, and we require another property which
could only be the specific volume expressed as

_ Vay _ Vai+Vpi— Vpy
0.18 kg 0.18 kg

VAF
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in which we know Vg; = 0.287 m?. Since V4; = Vp; and since vg; = 2.173
m? /kg, the above equation gives

~ 2x0.18 x2.173 — 0.287

— = 2.752 m3/k
vas 0.18 kg 752 m’/ke

It can be found from a Steam Table that steam at 1.5 bar and 2.752 m3/kg
specific volume is at a superheated vapour state, and the corresponding proper-
ties are

Uafr = 3332 kJ/kg and TAf = 618°C.

Using the above value of usy and the value of (W;,)p from (11.39) in
(11.40), we get

(Qin)a = [0.18 x (3332 — 2659) + 12.6] kJ = 133.7 kJ

which is the heat supplied by the electrical heater.

In summary, we conclude that the 133.7 kJ of heat supplied by the electrical
heater to the steam on side A, while maintaining the quasistatic nature of the
process on side A, is used to raise its temperature to 618°C and for this steam
to push the piston outwards by doing 12.6 kJ of work on the piston. The piston
moves without friction to use the 12.6 kJ of work to quasistatically and adia-
batically compress the steam on side B. The work done on this steam raises its
temperature to 248°C.

11.6 Summary

e If we can execute a process which can be reversed without leaving any
trace on the surroundings, then such a process is known as the reversible
process. That is, if a reversible process is reversed then both the system
and the surroundings are returned to their respective original states at the
end of the reverse process. Processes that are not reversible are called
irreversible processes.
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Entropy is defined as

= 11.1
dS ( T >T‘€’U ( )
For any system undergoing any process,
Tds =du+ Pdv (11.7)
Tds=dh—vdP (11.8)

Entropy remains a constant for a reversible adiabatic process, which is
also known as an isentropic process.

The path of an isentropic process of an ideal gas can be described by
(7.29), (7.30) and (7.31).

The path of an isentropic process of a water/steam system may be traced
by using the fact that entropy remains constant along such a path.

For a reversible isothermal process of any substance,

Qin=TAS (11.15)

For both the reversible and irreversible constant-pressure processes of any
substance,

Ty
AS:/ % dT (11.17)
T
which, when C), is taken as a constant, reduces to
T
As=C,In (—f> (11.18)
T,

For both the reversible and irreversible constant-volume processes of any
substance,

Ty C
ASZ/ —dT (11.20)
T
which, when C,, is taken as a constant, reduces to
T
As=C, In (—f) (11.21)
T,

For an incompressible substance, with constant specific heat C', undergo-
ing any process,

T
As=C In <?f> (11.22)

where C' = (), = C,, for an incompressible substance.
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e For an ideal gas, with constant C), and C,, undergoing any process,

Ty vy
As = C,In(=L In (L 11.2
s C n<T0>+R n(vo) ( 3)
T P
= Cyln <T£> ~Rln <Ff) (11.24)
_ vf Py
= G ln(v()) +Cy ln(PO> (11.25)

e For reversible flow through a compressor, pump, fan or blower
. Pe
(W )in = 12 / vdP (11.37)
P
e For reversible liquid flow through a pump

(W)in ~ mv; (P. — B) (11.38)

since the specific volume of a liquid varies only slightly when it flows
through a pump.



