Contents

P	REFACE	. ix
S	YMBOLS USED	. xii
U	NITS USED	. xiv
1.	THE FIRST LAW	1
2.	THERMODYNAMIC TERMINOLOGY	7
	2.1 System, Surroundings & Boundary	8
	2.2 Open, Closed & Isolated Systems	10
	2.3 Property	11
	2.4 State	13
	2.5 Equilibrium State	13
	2.6 Process	15
	2.7 Simple Compressible System	17
	2.8 State Postulate	18
	2.9 Property Diagram	19
3.	THE FIRST LAW APPLIED TO CLOSED SYSTEMS	. 21
	3.1 Energy Balance for a Closed System	22
	3.2 A Word of Caution	26
	3.3 Worked Example	27
	3.4 Summary	28
4.	Internal Energy & Enthalpy	. 29
	4.1 Internal Energy	30
	4.2 Enthalpy	32
	4.3 Summary	34
5.	Working with Ideal Gas	. 35
	5.1 Definition of an Ideal Gas	36
	5.2 Absolute Temperature Scale	37

	5.3 Different Forms of the Ideal Gas Equation of State	37
	5.4 Internal Energy and C_v	38
	5.5 Enthalpy and C_p	41
	5.6 Relating Ideal Gas Specific Heats	42
	5.7 Data on Ideal Gas Specific Heats	43
	5.8 Evaluation of ΔU for an Ideal Gas	46
	5.9 Worked Examples	49
	5.10 Summary	66
6.	Working with Real Gases & Steam	69
	6.1 Real Gas Behaviour	70
	6.2 Phase Change: Gas to Liquid	71
	6.3 P - v diagram for Phase Change	78
	$6.4\ P\text{-}T$ diagram for Phase Change	80
	6.5 The Steam Table	81
	6.6 Worked Examples	96
	6.7 Summary	108
7.	BOUNDARY WORK	109
	7.1 Boundary Work in Real Life	110
	7.2 Evaluation of Boundary Work	110
	7.3 Quasistatic Process	114
	7.4 Boundary Work in Real Processes	116
	7.5 Units for Boundary Work	117
	7.6 Path Dependence of Boundary Work	117
	7.7 Other Forms of Work	119
	7.8 Worked Examples	120
	7.9 Summary	158
8.	All About Heat	161
	8.1 What is Heat?	162
	8.2 Heat Supply and Common Sense	163

	8.3 Heat Supplied to Increase the Temperature	164
	8.4 Heat Supplied to Do Work	165
	8.5 Temperature Increase without Heat Supply	166
	8.6 Direct Evaluation of Q_{in}	167
	8.7 Zeroth Law of Thermodynamics	168
	8.8 Heat and Enthalpy	169
	8.9 Heat and Internal Energy	170
	8.10 Heat and Specific Heat	171
	8.11 Worked Examples	172
	8.12 Summary	188
9.	THE FIRST LAW APPLIED TO OPEN SYSTEMS	189
	9.1 Example of an Open System	190
	9.2 Mass Balance for an Open System	192
	9.3 Energy Balance for an Open System	193
	9.4 Worked Examples	200
	9.5 Summary	208
10.	THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES	211
	10.1 What is Steady?	212
	10.2 What is a Steady Flow Process?	212
	10.3 Characteristics of a Steady Flow Process	213
	10.4 Mass Balance for a Steady Flow Process	214
	10.5 Energy Balance for a Steady Flow Process	215
	10.6 Steady Flow Engineering Devices	217
	10.7 Worked Examples	225
	10.8 Summary	247
11.	Entropy	249
	11.1 Reversible Processes	250
	11.2 Definition of Entropy	252
	11.3 Evaluation of Entropy Change for any Process	253
	11.4 Isentropic Process	255

	11.5 Worked Examples	256
	11.6 Summary	270
12.	THERMODYNAMIC ANALYSES OF POWER PLANTS	273
	12.1 Gas Turbine for Electric Power Generation	274
	12.2 Gas Turbine for Jet Propulsion	281
	12.3 Steam Turbine for Electric Power Generation	286
	12.4 Gas Turbine - Steam Turbine Combined Power Plant	298
	12.5 Minimizing the Heat Loss from Power Plants	303
13.	INTRODUCTION TO THE SECOND LAW	305
	13.1 The Second Law	306
	13.2 Evaluation of Total Entropy Change	307
	13.3 Worked Examples	309
	13.4 Summary	332
Ini	DEX	335