
CP303 − Set #4 (July-October 2013)

Design of Ideal Plug Flow Reactors (PFRs)
operated at Steady State under Isothermal Conditions

(It is important to have this note set with you during all lecture classes.)

In a plug flow reactor (abbreviated PFR), reactants are fed to the reactor at the inlet and
the products are removed from the reactor at the outlet. The reaction takes place within the
reactor as the reacting mixture moves through the pipe. In an ideal plug flow reactor, the
reacting mixture is assumed to move as a plug and its properties are assumed to be uniformly
distributed across the cross-section of the reactor.
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vo
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FA is the molar flow rate of A in moles per time

FAo is the molar flow rate of A at the inlet in moles per time
FAf is the molar flow rate of A at the exit in moles per time

vo is the volumetric flow rate at the inlet in volume per time
vf is the volumetric flow rate at the exit in volume per time

- FA + dFA-
?

differential volume dV

Design equation for reactant A in the PFR is obtained by writing the mass balance for
reactant A over a differential volume of the reacting mixture dV as follows:

mass of A entering the volume dV per unit time
= mass of A leaving the volume dV per unit time

+ mass of A accumulated within the volume dV per unit time
+ mass of A disappearing by the reaction within the volume dV per unit time

At steady state, no accumulation takes place. Therefore, at steady state, the above reduces
to

FAMA = (FA + dFA)MA + (−rA)MA dV (4.1)

where FA is the number of moles of A per unit time entering the differential volume dV ,
(FA+dFA) is the number of moles of A per unit time leaving the differential volume dV , MA

is the molar mass of A, and (−rA) is the molar rate at which A is disappearing because of the
progression of the reaction. Note that the unit of rA is, in general, moles per volume per time
and therefore rA is multiplied by the molar mass of A to get the reaction rate in compatible
unit for the mass balance given by (4.1).
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Removing MA from (4.1) and rearranging it, we get the design equation for reactant A in
an ideal PFR operated at steady-state as follows:

dFA
dV

= rA (4.2)

Working out in terms of the molar flow rate of A, FA:
The volume VPFR required to reduce the molar flow rate of A in the PFR from FAo mol/sec

at the entrance of the reactor to FAf mol/sec at the exit of the reactor can be evaluated by
integrating (4.2) as follows:

VPFR =
∫ FAf

FAo

1

rA
dFA =

∫ FAo

FAf

1

(−rA)
dFA (4.3)

where (−rA) should be expressed as a function of FA.

Working out in terms of the concentration of A, CA:
Concentration CA in an ideal PFR is defined as follows:

CA ≡
Molar flow rate of A at a certain cross-section

Volumetric flow rate of the reacting mixture at the cross-section
=
FA
v

(4.4)

Equation (4.4) gives FA = CA v. Substituting which in (4.2), we get

d(CA v)

dV
= rA (4.5)

If the volumetric flow rate v is a constant then (4.5) yields

VPFR =
∫ CAf

CAo

v

rA
dCA =

∫ CAo

CAf

v

(−rA)
dCA (4.6)

where CAo and CAf are the respective concentrations of A at the entrance and at the exit of
the reactor, respectively, and (−rA) should be expressed as a function of CA.

If the volumetric flow rate v is not a constant then the solution procedure gets slightly
more complicated which will be discussed in Example 4.3 of this note set.

Working out in terms of the conversion of A, xA:
Conversion of A in a PFR is defined by

xA ≡
FAo − FA
FAo

(4.7)

which gives FA = FAo (1− xA). Substituting which in (4.2), we get

−FAo dxA
dV

= rA (4.8)

Equation (4.8), when integrated with the conditions xA = 0 at the entrance (where V =
0) and xA = xAf at the exit (where V = VPFR), gives

VPFR =
∫ xAf

0

FAo
(−rA)

dxA (4.9)

where xAf is the conversion of A at the exit of the reactor, and (−rA) should be expressed
as a function of xA.
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Example 4.1: Consider the elementary liquid-phase reaction A −→ products taking
place in an ideal PFR operated at steady state at constant temperature. Determine the space-
time required for the concentration of A to become half of its inlet concentration.

Solution:
Since the given reaction is elementary, the reaction rate equation can be written as

rA = −k CA (4.10)

where k, which is a function of temperature, remains constant since the reaction is said to
take place at constant temperature.

Substituting rA given by (4.10) in the design equation for A in an ideal PFR operated at
steady state, given by (4.2), we get

dFA
dV

= −k CA (4.11)

Substituting FA = CA v in (4.11), we get a differential equation in terms of CA as

d(CA v)

dV
= −k CA

The given reaction is a liquid phase-reaction, and therefore it is acceptable to assume that
the density of the reacting mixture remains a constant. At steady flow, the mass flow rate
of the reacting mixture remains a constant. Thus, the volumetric flow rate of the reacting
mixture v remains a constant, which helps to simplify the above equation to

v
dCA
dV

= −k CA (4.12)

The space-time for an ideal PFR is defined as

τ ≡ Volume of the reactor

Volumetric flow rate of the reacting mixture
=
V

v
(4.13)

where v is taken as a constant.
From (4.13), we get dV = v dτ . Using which (4.12) can be rewritten as

dCA
dτ

= −k CA (4.14)

Note that (4.14) is very similar to (2.12) describing the batch reactor (see Set #2), except
for the fact time t for the batch reactor is replaced by space-time τ for the PFR.

The differential equation describing the liquid-phase reaction in an ideal PFR
operated at steady-state and the differential equation describing the liquid-
phase reaction in a batch reactor are very similar in nature.

At the entrance of the reactor, τ takes the value zero and CA = CAo. Integrating (4.14)
with this condition, we get

CA = CAo exp
−k τ
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which gives

τf =
− ln (CAf/CAo)

k
(4.15)

where τf is the space-time required to obtain the final concentration of A and CAf is the final
concentration of A.

Therefore, the space-time required to halve the initial concentration could be calculated
as follows:

τf =
− ln (0.5CAo/CAo)

k
=
− ln (0.5)

k
(4.16)

Example 4.2: Determine the space-time taken to reach 90% conversion of A in the
reaction considered in Example 4.1.

Solution:
Using CA = FA/v and dV = v dτ for constant v in (4.11), we get a differential equation

in terms of FA as
dFA
dτ

= −k FA

Substituting FA = FAo (1− xA) in the above equation, we get

−FAo
dxA
dτ

= −k FAo (1− xA)

which gets simplified to
dxA
dτ

= k (1− xA) (4.17)

which is similar to (2.15) describing the batch reactor (see Set #2).
Equation (4.17), when integrated with the conditions xA = 0 at the entrance (where V =

0) and xA = xAf at the exit (where V = VPFR), gives

τf =
1

k

∫ xAf

0

dxA
(1− xA)

=
1

k

[
− ln (1− xA)

]xAf

0
=
− ln (1− xAf )

k
(4.18)

Since xAf = 0.9 we get

τf =
− ln (0.1)

k
(4.19)

Example 4.3: Consider the gas-phase reaction 2A −→ B + 2C, for which the rate
equation is given by

rA = −k C2
A (4.20)

Conversion of A required is expected to be 90%. Determine the space-time required to carry
out the above reaction in an ideal PFR operated at steady state under constant temperature
and constant pressure conditions.

Solution:
Substituting rA given by (4.20) in the design equation of an ideal PFR operated at steady

state, given by (4.2), we get
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dFA
dV

= −k C2
A (4.21)

Since the problem is a gas-phase reaction, it is convenient to work it out in terms of
conversion of A. In order to do that, we must first write the above differential equation in
terms of FA, which is done as follows:

Substituting CA = FA/v in (4.21), we get a differential equation in terms of FA as

dFA
dV

= −k
(
F 2
A

v2

)
(4.22)

Conversion of A at distance l from the entrance of a PFR is denoted by xA and is defined
as xA ≡ FAo−FA

FAo
which gives

FA = FAo (1− xA) (4.23)

Combining (4.21) and (4.23), we get

dxA
dV

=
k FAo
v2

(1− xA)2 (4.24)

which is the differential equation in terms of conversion of A.
If the volumetric flow rate v remains a constant then (4.24) can be integrated to obtain

the volume V required to achieve 90% conversion of A.

V =
v

k CAo

∫ 0.9

0

1

(1− xA)2
dxA (4.25)

where CAo = FAo/v for an ideal PFR with constant volumetric flow rate.
But, the given reaction is a gas-phase reaction in which 2 moles of reactant give 3 moles

of product. Besides, the temperature and the pressure remain constants. Therefore, the
volumetric flow rate v would change with the distance l from the entrance of the reactor. Let
us use the ideal gas equation of state to describe the behaviour of the given gas mixture. We
then get

P v = FT RT (4.26)

where FT denotes the total molar flow rate of the reacting mixture at distance l from the
entrance of the reactor, and is given by

FT = FA + FB + FC + FI (4.27)

where FA, FB, FC and FI are the respective molar flow rates of A, B, C, and inert gas I at
distance l from the entrance of the reactor.

Stoichiometry gives

FAo − FA
2

=
FB − FBo

1
=

FC − FCo
2

(4.28)

Equation (4.28) combined with (4.23) gives

FB = FBo + FAo (xA/2) and FC = FCo + FAo (xA) (4.29)
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The inert gas does not react, and therefore

FI = FIo (4.30)

Using (4.29) and (4.30) in (4.27), we get

FT = FTo

(
1 +

FAo
FTo

xA
2

)
(4.31)

where FTo = FAo+FBo+FCo+FIo, denotes the total molar flow rate of the reacting mixture
at the entrance of the reactor.

Substituting FT from (4.31) in (4.26), we get

v =
FToRT

P

(
1 +

FAo
FTo

xA
2

)
(4.32)

Since the volumetric flow rate of the feed vo also satisfies the ideal gas equation of state,
as Po vo = FToRTo, (4.32) can be rewritten as

v =
Po
P

T

To
vo

(
1 +

FAo
FTo

xA
2

)
(4.33)

Since the reactor is maintained at constant pressure and temperature, (4.33) becomes

v = vo

(
1 +

FAo
FTo

xA
2

)
(4.34)

Substituting v from (4.34) in (4.24), we get

dxA
dV

=
k FAo
v2o

(1− xA)2(
1 + FAo

FTo

xA
2

)2 =
k CAo
vo

(1− xA)2(
1 + FAo

FTo

xA
2

)2 (4.35)

where CAo is the concentration of A at the entrance of the reactor given by (FAo/vo).
Equation (4.35) shall be integrated to obtain the space-time of an ideal PFR required to

achieve 90% conversion of A as

τ ≡ V

vo
=

1

k CAo

∫ 0.9

0

(
1 + FAo

FTo

xA
2

)2
(1− xA)2

dxA (4.36)

Let us suppose that only pure A is fed to the reactor. Then (4.36) reduces to

τ =
1

k CAo

∫ 0.9

0

(1 + 0.5xA)
2

(1− xA)2
dxA (4.37)

For a general gas-phase reaction,

aA+ bB + cC + · · · −→ pP + q Q+ s S + · · · , (4.38)

the volumetric flow rate v is related to xA by

v =
Po
P

T

To
vo (1 + εA xA) . (4.39)

where

ε =
FAo
FTo

[
(p+ q + s+ · · ·)− (a+ b+ c+ · · ·)

a

]
(4.40)

and FTo = (FAo + FBo + FCo + · · ·) + (FPo + FQo + FRo + · · ·) + FIo is the total number of
moles of the reacting mixture entering the reactor.
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